
Wolfram Mathematica

Lindblad Operator Package Tutorial

Devesh Karthik
Department of Physics, University of Connecticut, Storrs, CT

June 5, 2024

1 Introduction

The Lindblad master equation

dρ

dt
= −i [H, ρ] +

∑
i

γi[LiρL
†
i −

1

2

{
L†
iLi, ρ

}
] (1)

models the time evolution of open quantum systems using the density matrix ρ, the

Hamiltonian of the system H, dissipators Li, and amplitudes of dissipation γi.

The Lindblad operator L, otherwise known as the Lindbladian, acts upon ρ as the matrix

representation of the right-hand side of the Lindblad master equation. We can use the

Lindblad Operator package in Mathematica to create the Lindbladian.

In this tutorial, we will consider an open system of the following qualities:

1. Hamiltonian: H = Ka†
2
a2 − ϵ2

(
a†

2
+ a2

)
• Dimension: N = 15

• Kerr Non-Linearity Parameter: K = 1

• Control Parameter: ϵ2 = 3

2. Dissipation: κ = 0.1

3. Mean Number of Photons in Environment: η = 0.1

4. Dissipators: L1 = a, L2 = a†

5. Amplitudes of Dissipation: γ1 = κ (η + 1) , γ2 = κη

6. Initial state: Ground state ϕ0.

1



2 Preparing the System

We begin by defining the constants of our system. For simplicity, we let ℏ = 1.

dim = 15

kerr = 1

e2 = 3

Kappa = 0.1

nth = 0.1

g1 = Kappa*(nth + 1)

g2 = Kappa*nth

gs = {g1, g2}
h = 1

We can now define our Hamiltonian as a matrix of dimension 15× 15.

Do[bb[k] = h k, {k, 0, dim - 1}]
Do[Do[HHo[i, j] = 0., {j, 0, dim - 1, 1}], {i, 0, dim - 1, 1}]
HHo[0, 0] = 0

Do[HHo[k, k] = kerr bb[k] (bb[k] - 1), {k, 0, dim - 1, 1}]
Do[HHo[k, k + 2] = -e2 Sqrt[(k + 1) (k + 2)]; HHo[k + 2, k] = HHo[k, k + 2],

{k, 0, dim - 3, 1}]
H = Table[Table[HHo[i, j], {j, 0, dim - 1, 1}], {i, 0, dim - 1, 1}]

Finally, we define our dissipators: the creation and annihilation operators. The

annihilation operator is defined by first creating a 15 × 16 dimensional matrix with the

elements of the shifted diagonal as the square-root of the row number. Then, we remove

the last column to create our annihilation operator in a Hilbert space of size 15.

a = Normal[SparseArray[Table[{i, i + 1} -> Sqrt[i], {i, 1, dim, 1}]]][[1;;-1,1;;-2]]

Since the creation operator is the hermitian conjugate of the annihilation operator, and

because all elements of the annihilation operator are real, we can take the transpose of a

to get a†. We then package both a and a† for ease of use.

ad = Transpose[a]

Cs = {a, ad}

2



3 The Lindblad Operator Package

The Lindblad Operator package defines the Lindbladian as a matrix of dimension N2×N2

and exports it into a .dat file as a list of N4 complex numbers. We can open the package

by running the command Import["https://bit.ly/3V17kNv"].

The LINDBLAD function employs the same structure of the Eq. (1) and takes 4 inputs to

create the Lindbladian operator: H the Hamiltonian as an N × N matrix, Cs a list of

the dissipators Li, gs a list of the corresponding amplitudes γi, and the value of ℏ. The
code below successfully creates the Lindbladian operator from our example.

LINDBLAD[H, Cs, gs, h]

If continuing to work in Mathematica, calling the command LINDBLADN is sufficient to

access the Lindbladian defined above.

However, if migrating to a different environment, we need to access the file L.dat that

contains the elements of the Lindbladian. If no directory was specified, the file saves in

the Documents folder. To specify a directory, simply run the function

SetDirectory["\Target\Directory\Here"]

with the desired file path inside the quotations before defining the Lindbladian through

the LINDBLAD function.

4 Importing the Lindbladian into Python

The information of the Lindbladian is now stored in the L.dat file. To access it in Python,

we begin by moving the file into the same location as our Python program. Then, we

run the following code to save the content of the file as a Python variable object.

file = open("L.dat", "r")

object = file.read()

file.close()

Since object is a string, the information inside cannot be accessed directly. Thus, in

order to create our matrix, we must convert our string of information into an array of

dimension N2 ×N2.

3



We first replace the imaginary number representation in Mathematica (represented by I)

with the format Python recognizes as a complex number.

object = object.replace("I", f"1j")

Then, we cut out extra spaces surrounding operators + and −, replace every indent

and newline with a space, and finally split the data at every space.

object = object.replace(" + ","+").replace(" - ","-")

data = list(object.replace("\t", " ").replace("\n", " ").split())

The variable data is an array of size N4 containing a string representation of each element

in the Lindbladian. We can now iterate through each element non-zero element of the

array and convert our string into usable numerical data with the eval() function.

import numpy as np

rows = []

for i in range(len(data)):

if data[i] != "0.":

rows.append(i)

datas = []

for i in range(len(rows)):

datas.append(np.complex128(eval(data[rows[i]])))

lind = np.zeros(len(data), dtype=complex)

for i in range(len(rows)):

lind[rows[i]] = datas[i]

The variable lind now holds an array of length N4 containing each element of the lind-

bladian. We can resize this into a square matrix of dimensions N2 ×N2 to represent our

Lindblad operator.

dim = int(np.sqrt(len(data)))

lind = lind.reshape(dim, dim)

In our example, lind is now of dimensions 225× 225.

4



5 Calculating TX in Python

An important quantity that can be derived from the Lindbladian is TX , which represents

the decay rate of the system’s survival probability. This value is calculated through a

method known as Singular Value Decomposition, which provides an exact representation

of a matrix through factorization.

We can determine TX with the following code:

from numpy.linalg import svd

Tx = 1/min(svd(lind)[1][:-1])

For the example we have been following, TX = 100.46. Though the full implications of

this value are not clear yet, it is certain that the TX value of a lindbladian plays a critical

role in further understanding open quantum system dynamics.

6 Exercise

For the system mentioned in the Introduction, graph the survival probability in the time

span 0 ≤ t ≤ 10 using your environment of choice (Mathematica, Python, Julia, Fortran,

etc).

5


