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There are a numerous physical situation in which a  HOLE or LEAK is introduced in an otherwise closed system.

Motivation

• Natural origin.

• It can mimic measurement devices.

• It can also be used to reveal dynamical properties of closed system

Applications: Room acoustic, Billiards, Chemical reactions, Hydrodynamical flow, Planetary science, 
Optical microcavities, Plasmas physics



28/06/2024 3

• Escape or removal of trajectories

• Conservative system remain conservative
after becoming leaky.

• Persistent chaos becomes transient chaos.

LEAKING SYSTEM INTERACTION WITH ENVIROMENTS

DISSIPATION

• Exchange of energy, matter or information with the 
environment

• Contraction in the phase space

• The dynamics of the environment can influence the 
system

𝒑
𝒒

𝒑
𝒒

System Enviroment
Interaction
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Classical Methods

LEAKING SYSTEM INTERACTION WITH ENVIROMENTS

• Effect of environment 
using differential equations

• Fokker-Planck equation

• Analysis of trajectories in 
phase space

• Sabine’s law
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Quantum Methods

LEAKING SYSTEM INTERACTION WITH ENVIROMENTS

• Eigenvalue problem for effective 
evolution operator 

(Non-Hermitian Problem)

Second part for Edson

𝐻 = 𝐻# +𝐻$ + 𝜇𝐼

𝑑𝜌
𝑑𝑡 = −𝑖 𝐻, 𝜌 +.

!

𝛾! 𝐿!𝜌𝐿!
" −

1
2 𝐿!

"𝐿! , 𝜌

• Master equation for the density matrix: 

• Non-Hermitian Hamiltonian with a complex term

System Interaction: enviroment

Lindblad Master equation (Devesh’s presentation):



Our system:    Standard Map in the Chaotic Regime
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Classical map

K=10

0 1

1

0

p

q

K=1

0 1

1

0

p

q

K=0

0 1

1

0

p

q

Strong Chaos



Leaky Standard Map in the Chaotic Regime
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Time: 6.0

Time: 5.1

FTLE: 1.55

FTLE: 1.68

Results

Results
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Review quantum maps
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q Quantum map 𝑈:  

q Position and momentum basis: 𝛼 = 𝛽 = 0 (periodic conditions) 

q Torus topology

𝜓 𝑛 + 1 = 𝑈 𝜓 𝑛 , 𝜏 = 1

𝑝# = 0 , 1/𝑁 ,… , |𝑚/𝑁⟩, … , (𝑁 − 1)/𝑁𝑞$ = 0 , 1/𝑁 ,… , |𝑛/𝑁⟩, … , (𝑁 − 1)/𝑁

𝜓 𝑞 + 1 = 𝑞 + 1 𝜓 = 𝑒%&!'𝜓 𝑞

𝜓 𝑝 + 1 = 𝑝 + 1 𝜓 = 𝑒(%&!)𝜓 𝑝

q Finite Hilbert space

2𝜋ℏ = 1/𝑁

Semiclassical limit: ℏ → 0 & 𝑁 → ∞

𝒑
𝒒



Review quantum maps
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q Quantum kicked rotor/ Quantum standard map

q In position representation

q Floquet states

𝑈$!$= 𝑞$! 𝑈 𝑞$ = *"#/%

+
exp !,+

%&
cos %& $!-)

+
exp !&

+
𝑛. − 𝑛 %

𝐻 𝑞, 𝑝 =
𝑝%

2 −
𝐾
4𝜋% cos 2𝜋𝑞 .

$/(0

0

𝛿 𝑡 − 𝑛 𝑈 = exp
𝑖𝐾
4𝜋%ℏ cos(2𝜋𝑞) exp −

𝑖𝑝%

2ℏ

Eigenangles or quasi-energies (0 ≤ 𝜃! < 2𝜋)𝑈$!$𝜙1 𝑞$ = 𝑒!2&𝜙1 𝑞$! ,



Open quantum maps
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𝒑
𝒒

Slit
q Quantum map with leakage

q Leakeage strip of width 𝛿 parallel to momentum axis

R𝑈 = 𝑈Π

ClosedClosed operator

Projector on the complement of the hole
𝛿

q$! Π q3 = Π$!$ = U
Π$,$ = 0, 𝑞$ ∈ 𝑠𝑡𝑟𝑖𝑝
Π$,$ = 1, 𝑞$ ∉ 𝑠𝑡𝑟𝑖𝑝

 

R𝑈$!$ = ⟨𝑞$!|R𝑈 𝑞$ = .
#/5

+(6

⟨𝑞$!|R𝑈 𝑝# ⟨𝑝# 𝑞$ = [

= 0, 𝑞$ ∈ 𝑠𝑡𝑟𝑖𝑝

R𝑈$!$ = 0, 𝑞$ ∈ 𝑠𝑡𝑟𝑖𝑝
R𝑈$!$ = 𝑈$!$ 𝑞$ ∉ 𝑠𝑡𝑟𝑖𝑝

R𝑈$!$ =
0 0

𝑈$!$ ⋮ ⋮ 𝑈$!$
0 0
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Eigenvalue Problem

q Closed quantum maps

q Open quantum maps R𝑈 is a non unitary matrix Eigenvalues 𝑒!2&  have a complex phase

R𝑈$!$𝜙1 𝑞$ = 𝑧1𝜙1 𝑞$! , 𝑧1 = 𝑒!2&(7'/%

Resonances Decay rate

𝑈 is a unitary matrix Eigenvalues 𝑒!2&

𝑈$!$𝜙1 𝑞$ = 𝑒!2&𝜙1 𝑞$!

Floquet
states

Eigenangles or quasi-energies (0 ≤ 𝜃! < 2𝜋)

Τ1 = 1/Γ1

Dwell time
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q Eigenvalues are inside the unit disc in the complex plane

q Distribution

 

Resonances

R = 1

Short-lived
resonances

Long-lived
resonances

Supersharp
resonances

Long tail for Γ > Γ#9:

Γ#9: → 𝛾;  (Classical decay 
rate)

𝜇< = 𝑒(=<𝜇

For chaotic regime



Resonances
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q Non-unitarity of ,𝑈 Left and Right eigenvectors are different

q Trivial right eigenvectors

q Right eigenvectors with smaller Γ concentrate on the forward-trapped set.   

R𝑈 𝜙1> = 𝑧$ 𝜙1> 𝜙1? R𝑈 = 𝑧$ 𝜙1?

𝜆1 = 0 ⟨𝑞 𝜙1> = 𝜙1> (𝑞) = 𝑧 0… 0 @ , 𝑧 ∊ ℂ

Trajectories that never hit the hole
when iterated foward

Left backward

backward

For chaotic regime
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Leaky quantum standard map



Closed system
Coherent States & Husimi distributions
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q 𝑈 𝑞, 𝑝 ≈ 𝑀 𝑞, 𝑝 , ℏ → 0 q 𝐻! 𝑞, 𝑝 = 𝑞, 𝑝 𝜙!
!

⟨#,%|#,%⟩



Husimi of the Resonances
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Right:

Left:



Schur Decomposition
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q Unitary transformation:  

q Gram-Schmidt process (QR algorithm) of a non-orthogonal set {|𝜙!⟩}

 

R𝑈 → 𝑄𝑇𝑄†
𝑇 =

𝑧6 𝑇6% ⋯ 𝑇6+
0 𝑧% ⋯ 𝑇%+
⋮ 0 ⋱ ⋮
0 ⋯ 0 𝑧+

𝑄 = (𝑣6 𝑣%…𝑣+)

{|𝑣1⟩} → orthonormal basis 

I. 𝑣6 = |𝜙6⟩
II. 𝑣% = 𝜙% − 𝜙% 𝑣6⟩|𝑣6⟩
   ⋮

𝑣$ = |𝜙$⟩ −.
A/6

$(6
𝜙$ 𝑣A⟩
𝑣A 𝑣A⟩

|𝑣A⟩

Depends on {|𝜙1⟩} configuration 𝑁! ≠ sets

q Select |𝑧(| > |𝑧)| > ⋯ > |𝑧*|

𝑣6 𝑣% 𝑣+
Long-lived
states

Short-lived
states



Husimi-Schur distributions
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Right:

Left:



Husimi-Schur distributions
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𝐿B = 0.2 𝐿B = 0.5



Wehrl Entropy
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q Quasi-entropy

q Localization on phase-space:   

 

𝑆C = −r𝐻1 𝑞, 𝑝 log𝐻1 𝑞, 𝑝 𝑑𝑞𝑑𝑝

𝑆C = −
1
𝒩.

B,D

𝐻1(𝑞, 𝑝) log𝐻1(𝑞, 𝑝)

Spread state→ Large Entropy Localized state→ Small Entropy

Quantum maps

Normalization constant

𝑆C = 1 → Fully delocalized state 𝑆C = 0 → Fully localized state

size 𝐻1 = 𝑀

𝒩 = 2 log𝑀



Wehrl Entropy of Husimi - Results
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0.92 0.940.93



PROBLEMS – Open Quantum map
1. From the Evolution operator in position representation of the quantum standard 

map, set the matrix in your preferred language code. Now, introduce the slit at 𝑞 =
0.2,0.4 ,which means that for 𝑁 = 1000, the columns 100 − 200 are zero. 

Calculate its eigenvalues and check that all fall in the unitary circle. (Suggested
parameters𝐾 = 10,𝑁 = 1000, 𝛼 = 𝛽 = 0). 

2. From the previous question, make the distribution of the decay rates Γ! and check
the characteristic distribution. (Sharp growth and long tail).

3. Now, change the parameter𝐾 = 0.3, 2, 𝑎𝑛𝑑 5, see that far from chaos our remarks
(Decay rate distribution) are very different due to new classical structures in the
system. 

4. Finally, calculate the right and left eigenvectors and see that they are not
orthogonal.
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Thank you


