Leaking Classical and Quantum Systems: Applied to the Standard map

> Dr. Miguel Prado, Edson Mateus Signor Prof. Sandra Prado, Prof. Lea Santos

Motivation

There are a numerous physical situation in which a HOLE or LEAK is introduced in an otherwise closed system.

- Natural origin.
- It can mimic measurement devices.
- It can also be used to reveal dynamical properties of closed system

Applications: Room acoustic, Billiards, Chemical reactions, Hydrodynamical flow, Planetary science, Optical microcavities, Plasmas physics

DISSIPATION

- Escape or removal of trajectories
- Conservative system remain conservative after becoming leaky.
- Persistent chaos becomes transient chaos.

LEAKING SYSTEM INTERACTION WITH ENVIROMENTS

- Exchange of energy, matter or information with the environment
- Contraction in the phase space
- The dynamics of the environment can influence the system

Classical Methods

• Analysis of trajectories in phase space

• Sabine's law

LEAKING SYSTEM INTERACTION WITH ENVIROMENTS

• Effect of environment using differential equations

• Fokker-Planck equation

Quantum Methods

• Eigenvalue problem for effective evolution operator

(Non-Hermitian Problem)

Second part for Edson

LEAKING SYSTEM | INTERACTION WITH ENVIROMENTS

$$
H = H_S + H_E + \mu I
$$

System enviroment linteraction:

• Master equation for the density matrix:

Lindblad Master equation (Devesh's presentation):

$$
\frac{d\rho}{dt} = -i[H,\rho] + \sum_{i} \gamma_i \left[L_i \rho L_i^{\dagger} - \frac{1}{2} \{ L_i^{\dagger} L_i, \rho \} \right]
$$

• Non-Hermitian Hamiltonian with a complex term

Our system: Standard Map in the Chaotic Regime

28/06/2024 Miguel & Edson (UCONN) 6

Leaky Standard Map in the Chaotic Regime

Review quantum maps

Quantum map $U: |\psi(n+1)\rangle = U |\psi(n)\rangle, \quad \tau = 1$

Q Position and momentum basis: $\alpha = \beta = 0$ (periodic conditions)

 \Box Torus topology

$$
\psi(q+1) = \langle q+1 | \psi \rangle = e^{2\pi i \beta} \psi(q)
$$

$$
\psi(p+1) = \langle p+1 | \psi \rangle = e^{-2\pi i \alpha} \psi(p)
$$

 $\{|q_n\rangle\} = |0\rangle, |1/N\rangle, ..., |n/N\rangle, ..., |(N-1)/N\rangle$ $\qquad | \{|p_m\rangle\} = |0\rangle, |1/N\rangle, ..., |m/N\rangle, ..., |(N-1)/N\rangle$

 \Box Finite Hilbert space

 $2\pi\hbar = 1/N$

Semiclassical limit: $|h|$

$$
\rightarrow 0 \& N \rightarrow \infty
$$

Review quantum maps

 \Box Quantum kicked rotor/ Quantum standard map

$$
H(q,p) = \frac{p^2}{2} - \frac{K}{4\pi^2} \cos(2\pi q) \sum_{n=-\infty}^{\infty} \delta(t - n)
$$

$$
U = \exp\left(\frac{iK}{4\pi^2 \hbar} \cos(2\pi q)\right) \exp\left(-\frac{ip^2}{2\hbar}\right)
$$

 \Box In position representation

$$
U_{n'n} = \langle q_{n'} | U | q_n \rangle = \frac{e^{i\pi/4}}{\sqrt{N}} \exp\left(\frac{iKN}{2\pi} \cos\left(\frac{2\pi(n'+\alpha)}{N}\right)\right) \exp\left(\frac{i\pi}{N}(n'-n)^2\right)
$$

Q Floquet states $U_{n'n}\phi_k(q_n) = e^{i\theta_k}\phi_k(q_{n'}),$ \longrightarrow Eigenangles or quasi-energies ($0 \le \theta_k < 2\pi$)

Open quantum maps

Eigenvalue Problem

Resonances

Resonances

 \Box Non-unitarity of $\widetilde{U} \longrightarrow$ Left and Right eigenvectors are different

 $\widetilde{U}|\phi_k^R\rangle = z_n|\phi_k^R\rangle \qquad \quad \langle \phi_k^L|\widetilde{U} = z_n\langle \phi_k^L|\widetilde{U}\rangle$

1 Trivial right eigenvectors
$$
\longrightarrow \lambda_k = 0 \longrightarrow \langle q | \phi_k^R \rangle = \phi_k^R (q) = (z \ 0 \dots \ 0)^T
$$
, $z \in \mathbb{C}$

For chaotic regime

 \Box Right eigenvectors with smaller Γ concentrate on the forward-trapped set. Left backward

 \rightarrow Trajectories that never hit the hole when iterated foward

backward

Leaky quantum standard map

28/06/2024 Miguel & Edson (UCONN) 15

 0.0

 0.0

 0.2

 0.4

 q

 0.6

 0.8

 1.0

 0.2

 0.4

 q

 $N = 5000$, state = 500, $\Gamma = 0.271$

Husimi of the Resonances

 1.0

 0.8

 0.6

 0.4

 0.2

 $0.0 -$

 0.0

 α

 $1.0 \cdot$

 $0.8 \cdot$

 0.6

 0.4

 0.2

 $0.0 -$

 0.0

 \mathtt{a}

 0.2

 0.4

 q

 0.6

 0.8

 $N = 5000$, state = 1000, $\Gamma = 0.385$

 0.8

 1.0

 0.6

 q

Schur Decomposition

□ Unitary transformation:	$\widetilde{U} \rightarrow QTQ^{\dagger}$	$T = \begin{bmatrix} z_1 & T_{12} & \cdots & T_{1N} \\ 0 & z_2 & \cdots & T_{2N} \\ \vdots & 0 & \ddots & \vdots \\ 0 & \cdots & 0 & z_N \end{bmatrix}$	$Q = (v_1 v_2 \dots v_N)$
---------------------------	---	---	---------------------------

Gram-Schmidt process (QR algorithm) of a non-orthogonal set $\{|\phi_k\rangle\}$

I.
$$
|v_1\rangle = |\phi_1\rangle
$$

\n*II.* $|v_2\rangle = |\phi_2\rangle - \langle \phi_2 | v_1 \rangle | v_1 \rangle$
\n $|v_n\rangle = |\phi_n\rangle - \sum_{j=1}^{n-1} \frac{\langle \phi_n | v_j \rangle}{\langle v_j | v_j \rangle} | v_j \rangle$
\n $|v_n\rangle = |\phi_n\rangle - \sum_{j=1}^{n-1} \frac{\langle \phi_n | v_j \rangle}{\langle v_j | v_j \rangle} | v_j \rangle$
\nLong-lived states
\n**0**
\nLong-lived states
\n*I*
\n

 \mathbf{q}

 1.0

 0.6

 0.4

 $0.2 -$

 $0.0_{0.0}$

 1.0

 0.8

 0.6

 $0.4 -$

 $0.2 -$

 $0⁰$

 0.0

 0.2

 0.4

 q

 $0.6 0.8$

 1.1

 $\mathtt{\underline{o}}$

 0.2

 0.4

 q

 0.6

 α

 0.4

 0.6

 \mathbf{q}

 0.8

 1.0

 $N = 5000$, state = 2000, $\Gamma = 3.494$

 $1.$

 0.8

 0.6

 0.4

 0.2

 0.0

 1.0

 0.0

 0.2

 \circ

28/06/2024 Miguel & Edson (UCONN) 18

Husimi-Schur distributions

Wehrl Entropy

Wehrl Entropy of Husimi - Results

PROBLEMS – Open Quantum map

- 1. From the Evolution operator in position representation of the quantum standard map, set the matrix in your preferred language code. Now, introduce the slit at $q =$ 0.2,0.4], which means that for $N = 1000$, the columns $100 - 200$ are zero. Calculate its eigenvalues and check that all fall in the unitary circle. (Suggested parameters $K = 10, N = 1000, \alpha = \beta = 0$.
- 2. From the previous question, make the distribution of the decay rates Γ_k and check the characteristic distribution. (Sharp growth and long tail).
- 3. Now, change the parameter $K = 0.3$, 2, and 5, see that far from chaos our remarks (Decay rate distribution) are very different due to new classical structures in the system.
- 4. Finally, calculate the right and left eigenvectors and see that they are not orthogonal.

Thank you