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Operator growth

Let us choose an operator Ô which is simple at t = 0 and consider its time
evolution

Ô(t) = eiĤtÔ0e
−iĤt =

∞∑
n=0

(it)n

n!
Ln(Ô0) (1)

= Ô0 + it[Ĥ, Ô0] +
(it)2

2!
[Ĥ, [Ĥ, Ô0]] + · · ·

where L(•) = [Ĥ, •] is the Liouvillian.
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(it)2

2!
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Beyond spatial support growth
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Schrödinger picture

|ψt⟩ = e−iĤt|ψ0⟩ =
∞∑
n=0

(−it)n

n!
Ĥn|ψ0⟩. (2)

Problem
How to find the minimal subspace of H which contains the dynamics of |ψ0⟩
for any t > 0?
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The set {Hn|ψ0⟩} contains all the information only about the portion of H
visited by |ψt⟩.

{
Ĥn|ψ0⟩

}
orthonormalization−−−−−−−−−−−→

{
|Kn⟩

}K−1

n=0
(3)

If we accomplish this task, we call the set
{
|Kn⟩K−1

n=0

}
the Krylov basis which

spans the so-called Krylov subspace K|ψ0⟩ for the initial state |ψ0⟩
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Lanczos algorithm - Gram-Schmidt orthogonalization
First step
• |K0⟩ = |ψ0⟩
• |K1⟩ = 1

b1
H|K0⟩, where b1 =

√
⟨K1|K1⟩

Recursive method:

|An⟩ = H|Kn−1⟩ − an|Kn−1⟩ − bn−1|Kn−2⟩ (4)

bn :=
√
⟨An|An⟩, an = ⟨Kn|Ĥ|Kn⟩

|Kn⟩ =
1

bn
|An⟩

Output: Lanczos coefficients and the Krylov basis

bn :=
√

⟨Kn|Kn⟩, an = ⟨Kn|Ĥ|Kn⟩,
{
|Kn⟩

}K−1

n=0
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Interestingly, the hamiltonian in the Krylov basis

H
.
=


a0 b1 0 0 · · ·
b1 a1 b2 0 · · ·
0 b2 a3 b3 · · ·
0 0 b3 a4 · · ·
...

...
...

... . . .

 . (5)

Krylov subspace method

A method which practically maps any quantum problem into an one dimen-
sional problem.
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The tight-binding model
Returning to the Lanczos algorithm, we can write the recurrence in the form

H|Kn⟩ = an|Kn⟩+ bn+1|Kn+1⟩+ bn|Kn−1⟩. (6)

Using the Schrödinger equation i∂t|ψt⟩ = H|ψt⟩,

i∂tφn(t) = anφn(t) + bn+1φn+1(t) + bnφn−1(t) (7)

where φ(t) := ⟨ψt|Kn⟩ and φn(0) = δn0.
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Mapping the problem

The dynamics in the Krylov subspace is equivalent to a hopping particle in a
one-dimensional disorded chain.

As time passes, the evolving state |ψt⟩ delocalizes in the Krylov basis. The
average position of the hopping particle shall reflect this delocalization.

CK(t) =
K−1∑
n=0

n|⟨ψt|Kn⟩|2. (8)

This quantity has been called Krylov complexity.
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Summarizing...

• The Krylov subspace is the minimal subspace in which the dynamics of
|ψ0⟩ unfolds.

• In principle, the Krylov subspace may be unique for each initial state |ψ0⟩
(some states are more "ergodic" than others).

• The dynamics in the Krylov subspace can be seen as the delocalization
of a single particle wave-packet in a 1D disorded chain with hopping
terms given by the Lanczos coefficients.

• The average position of the hopping particle reflects the delocalization of
|ψt⟩ in the Krylov subspace and it is called Krylov complexity.
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The study of Krylov complexity has been applied in
• Several quantum many-body systems (integrable, quasi-integrable and

chaotic);
• Distinguishing topological phases of matter;
• Probing equilibrium phase transitions;
• Open quantum systems
• Quantum field theories;
• Cosmology etc;

Our motivation

How the Krylov complexity behaves in a cenario of dynamical criticality in iso-
lated systems?
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The Lipkin-Meshkov-Glick model

Ĥ(h) = − J

2N

N∑
i<j

szi s
z
j − h

N∑
i=1

sx. (9)

In the fully symmetric sector (j = N/2), the hamiltonian can be written in
terms of collective spin variables Ŝα =

∑
i s
α
i /2

Ĥ(h) = − J

N
Ŝ2
z − hŜx (10)
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Quench protocol

• t < t0.
h = h0 −→ Ĥ(h = h0) ≡ Ĥ0

|ψ(t = 0)⟩ ≡ |ψ0⟩ = |E0⟩, where
|E0⟩ is the ground-state of Ĥ0.

• t ≥ t0
h = hf −→ Ĥ(h = hf ) ≡ Ĥf

|ψt⟩ = e−iĤf t|ψ0⟩ t0
h0

hf
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Dynamical order parameter
sz = lim

N→∞

1

N
lim
T→∞

1

T

∫ T

0
⟨ψt|Ŝz|ψt⟩dt (11)

For the LMG model,

hdyn
c =

h0 + J

2
(12)
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Magnetization in the LMG model
Initial state: South pole of the Bloch sphere (negative magnetization) for
N = 200.
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Our results
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Krylov complexity in the LMG model

21/32



Time-averaged Krylov complexity as an order parameter!

C = lim
T→∞

1

T

∫ T

0
CK(t)dt (13)
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Once the DPT-I is related to the restoration of symmetry, we can infer that the
Krylov basis is also sensitive to the symmetry of the model and, therefore, a

deeper relation between the energy basis and Krylov basis should exist.
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Inverse Participation Ratio
IPR(t) =

∑
k

|⟨k|ψt⟩|4 =
∑
k

p2k(t). (14)

We considered two basis: the Krylov basis {|Kn⟩}K−1
n=0 and pre-quench energy

basis {|E0
n⟩}N+1

n=0 .
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Shannon entropy
E(t) = −

∑
n

pn(t) log[pn(t)] (15)

where pn(t) = |⟨Kn|ψ(t)⟩|2 for the Krylov basis and pn(t) = |⟨E0
n|ψ(t)⟩|2 for

the pre-quench energy basis.
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What is going on here??? Let’s take a closer look at the hamiltonian.
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Krylov basis for h0 = 0

The pre-quench hamiltonian and its basis are

Ĥ0 = − 1

2j
Ŝ2
z −→ Ĥ0|j,mz⟩ = −m

2
z

2j
|j,mz⟩, mz ∈ {−j,−j + 1, · · · , j − 1, j}

Ĥf = − 1

2j
Ŝ2
z −

hf
2

(
Ŝ+ + Ŝ−

)
The post-quench hamiltonian acts on these states yielding

Ĥf |j,mz⟩ = c0|j,mz⟩+ c+|j,mz + 1⟩+ c−|j,mz − 1⟩, (16)

where c0 = −m2
z/2j

c± = −h
2

√
j(j + 1)−mz(mz ± 1)
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Ĥ0 = − 1

2j
Ŝ2
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Ŝ+ + Ŝ−
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Ĥf |j,mz⟩ = c0|j,mz⟩+ c+|j,mz + 1⟩+ c−|j,mz − 1⟩, (16)

where c0 = −m2
z/2j

c± = −h
2

√
j(j + 1)−mz(mz ± 1)

27/32



Krylov basis for h0 = 0
Comparing these last equations

Ĥf |j,mz⟩ = c0|j,mz⟩+ c+|j,mz + 1⟩+ c−|j,mz − 1⟩ (17)

with the Lanczos recursive method:

H|Kn⟩ = an|Kn⟩+ bn+1|Kn+1⟩+ bn|Kn−1⟩ (18)

we conclude two final results
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Krylov basis for h0 = 0

|Ki⟩ = ±|j,mz⟩ (19)

and by making the changemz → −j +mz

bmz =
hf
2

√
mz(2j −mz + 1), mz ∈ {0, 1, · · · , 2j} (20)

0 50 100 150 200
mz

0

10

20

30

b m
z

hf = 0.3

hf = 0.5

hf = 0.7
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Moreover, note that we can write the expression of the Krylov complexity in
the form

CK(t) =

2j∑
mz=0

mz|⟨ψt|Kmz⟩|2. (21)

Considering now the expression of Sz(t),

Sz(t) = ⟨ψt|Ŝz|ψt⟩. (22)

and employing the completeness of the angular momentum basis,∑2j
mz=0 |j,−j +mz⟩⟨j,−j +mz| = I, we can readily show that

CK(t) = Sz(t) + j, (23)

thus, by taking the long-time average, confirming that

C = Sz + j. (24)
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Conclusions and open questions

• The Krylov subspace method is a powerful tool to understand the
dynamics in quantum systems.

• Krylov complexity safely detects and characterizes dynamical phase
transition in the LMG model.

Open questions
• What is the Krylov basis for h0 > 0?
• How does C scales near the dynamical critical point? Is it like

dC
dhf

∼ |h− hf |γ? What is the value of γ?

• Does C functions as an order parameter in other models?
• Deeper connections with ESQPT?
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Thank you for your attention
Contact: pedrosantosbento@gmail.com

www.qpequi.com
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