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Investigating the time evolution of complexity in quantum systems entails evaluating the spreading of the
system’s
identified as the one that minimizes this spreading. In this study, we develop a numerical explor
Krylov complexity in quantum states following a quench in the Lipkin-Meshkov-Glick model. Our r
that the long-term averaged Krylov complexity acts as an order parameter for this model. It effectively dis
inates between the two dynamic phases induced by the quench, sharing a critical point with the conventional
order parameter. Additionally, we examine the inverse participation ratio and the Shannon entropy in both the
Krylov basis and the energy basis. A matching dynamic behavior is observed in both bases when the initial state
possesses a specific symmetry. This behavior is analytically explained by establishing the equivalence between
the Krylov basis and the prequench energy eigenbasis.

state across a defined basis in its corresponding Hilbert space. Recently, the Krylov basis has been
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Let us choose an operator O which is simple at ¢ = 0 and consider its time
evolution

o(t) = Oyt — Z ol L"(0o) (1)
n=0 )
. (it)? .
= O + it[H, Op] + T[H’ [H, Op]] +

where L(e) = [H, o] is the Liouvillian.
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Problem
How to find the minimal subspace of H which contains the dynamics of |¢y)
forany ¢t > 0?




The set { H"|+y)} contains all the information only about the portion of H
visited by [¢).
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{E[7l‘7/10>} orthonormalization {‘Kn>} (3)

n=0

If we accomplish this task, we call the set {\Kn)fgol} the Krylov basis which
spans the so-called Krylov subspace K, for the initial state |v)



Lanczos algorithm - Gram-Schmidt orthogonalization

First step

® |Ko) = [o)

* |Ki) = ;- H|Ko), where b =/(Ki|K))
Recursive method:

|An> = H‘anl> - an‘anl> - bnfl‘K77,72> (4)
by == V <An‘An> ap = <Kn|H|Kn>
1
Kn = 7 An
Kb = 51

Output: Lanczos coefficients and the Krylov basis

K-1

b= VKD, an = (GIAIK), (1K)




Interestingly, the hamiltonian in the Krylov basis

a bl 0 0
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Krylov subspace method

A method which practically maps any quantum problem into an one dimen-
sional problem.




Returning to the Lanczos algorithm, we can write the recurrence in the form

H|Kn> — an|Kn> + bn+1|Kn+1> + bn|Kn*1>- (6)



Returning to the Lanczos algorithm, we can write the recurrence in the form
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Using the Schrédinger equation id;|vy) = H |1)y),
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H|Ky) = an|Kpn) + b1 Kny1) + o Kpo1). (6)

Using the Schrédinger equation id;|vy) = H |1)y),
0o (t) = anon(t) + bnt10n+1(t) + bnpn—1(t) (7)

where @(t) = <w7“Kﬂ> and 9977(0) = 0no-
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Mapping the problem

The dynamics in the Krylov subspace is equivalent to a hopping particle in a
one-dimensional disorded chain.




Mapping the problem

The dynamics in the Krylov subspace is equivalent to a hopping particle in a
one-dimensional disorded chain.

As time passes, the evolving state |;) delocalizes in the Krylov basis. The
average position of the hopping particle shall reflect this delocalization.

K-1

Cre(t) = 3 nl{wa| ) .

n=0

This quantity has been called Krylov complexity.




® The Krylov subspace is the minimal subspace in which the dynamics of
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® The Krylov subspace is the minimal subspace in which the dynamics of
|1)o) unfolds.

® |n principle, the Krylov subspace may be unique for each initial state |4)
(some states are more "ergodic" than others).

® The dynamics in the Krylov subspace can be seen as the delocalization
of a single particle wave-packet in a 1D disorded chain with hopping
terms given by the Lanczos coefficients.

® The average position of the hopping particle reflects the delocalization of
|1¢) in the Krylov subspace and it is called Krylov complexity.
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We present a hypothesis for the universal properties of operators evolving under Hamiltonian dynamics
in many-body systems. The hypothesis states that successive Lanczos coefficients in the continued fraction
expansion of the Green’s functions grow linearly with rate « in generic systems, with an extra logarithmic
correction in 1D. The rate @—an experimental observable—governs the exponential growth of operator
complexity in a sense we make precise. This exponential growth prevails beyond semiclassical or large-N
limits. Moreover, a upper bounds a large class of operator complexity measures, including the out-of-time-
order correlator. As a result, we obtain a sharp bound on Lyapunov exponents 4; < 2a, which complements
and improves the known universal low-temperature bound /4, <2z7. We illustrate our results in
paradigmatic examples such as nonintegrable spin chains, the Sachdev-Ye-Kitaev model, and classical
models. Finally, we use the hypothesis in conjunction with the recursion method to develop a technique
for computing diffusion constants.

DOI: 10.1103/PhysRevX.9.041017 Subject Areas: Condensed Matter Physics,
Nonlinear Dynamics, Quantum Physics




The study of Krylov complexity has been applied in

e Several quantum many-body systems (integrable, quasi-integrable and
chaotic);

Distinguishing topological phases of matter;
® Probing equilibrium phase transitions;
® Open quantum systems

Quantum field theories;
e Cosmology etc;
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Our motivation

How the Krylov complexity behaves in a cenario of dynamical criticality in iso-
lated systems?




N J =
H(h) = =52 sisi—h> s" (9)
i<j i=1
In the fully symmetric sector (j = N/2), the hamiltonian can be written in
terms of collective spin variables 5% =", s&/2

H(h) = —%

52 1S, (10)

%




® | <. R R
h=hy — H(h = ho) = Hy
[(t = 0)) = [do) = |Ep), where
|Ep) is the ground-state of Hj.
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For the LMG model,

payn ho +J




Initial state: South pole of the Bloch sphere (negative magnetization) for
N = 200.
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@. Our results
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C= lim — Cic(t)dt (13)
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Once the DPT-l is related to the restoration of symmetry, we can infer that the
Krylov basis is also sensitive to the symmetry of the model and, therefore, a
deeper relation between the energy basis and Krylov basis should exist.
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IPR(t) = > (Kl [* = > pi(t)- (14)

k k

We considered two basis: the Krylov basis {|K,,) ff;ol and pre-quench energy
basis {|E})},2.
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IPR(t) = > " [(klgn)|* = > pi(b). (14)

k k
We considered two basis: the Krylov basis {|K,) ff;ol and pre-quench energy
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== L p(®)lozlpn(t) (15)

where p,,(t) = |(K,[(t))|? for the Krylov basis and p,, (t) = |(EQ|¢(t))|? for
the pre-quench energy basis.

25/32



E(t) == palt)loglpn(t) (15)

where p,,(t) = |(K,[(t))|? for the Krylov basis and p,, (t) = |(EQ|¢(t))|? for

0.04F T ‘




What is going on here??? Let's take a closer look at the hamiltonian.
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The pre-quench hamiltonian and its basis are

N 1 - A m2 . . . . .
HOZ_ZS,Z — HO’Jamz>:_27;Uamz>7 7”26{_]7_]—"_17“' /7_17J}




The pre-quench hamiltonian and its basis are

N 1 - P m2 . . .
Hy=—-—5 —  Holj,m.)=—=2|j,m.), m.e€{—j,—j+1,-
2j 2j
A 1 .o hf/a
S < I (S s,)
SRR TACEE NS

The post-quench hamiltonian acts on these states yielding
Hylj,ms) = colj,mz) + exlj,ms + 1) + c—|j,m. — 1),

where co = —m2/2j

h
= —é\/j(j 1) —mu(m, £ 1)




Comparing these last equations
Hy|j.mz) = colj,mz) + cxljme + 1) + c_|jmz — 1) (17)

with the Lanczos recursive method:

H‘Kn> - (I‘TL|K’IL> + b7L+1|KrL+1> + b7L|KIL71> (18)




Comparing these last equations
Hylj,mz) = colj,mz) + celjyms + 1) + c_|j,m. — 1)
with the Lanczos recursive method:

H‘Kn> - an|Kn> + b7L+1|KrL+1> + b7L|KIL71>

we conclude two final results

(17)

(18)



| Ki) = £[j,m2) (19)
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|K;) = +|j,m.) (19)

and by making the change m, — —j + m,

h
b, = ?f\/mZ(Qj —m,+1), m,e{0,1,---,25} (20)

01 /
0 50 100 150 200
m. 29/32




Moreover, note that we can write the expression of the Krylov complexity in

the form 0
J

CIC(t) = Z mz’<wt‘sz>‘2' (21)

m,=0

Considering now the expression of S, (),
Sa(t) = (1| Szldb). (22)

and employing the completeness of the angular momentum basis,
S22 14, —j +m2){j, —j + ms| = |, we can readily show that

m.=0
CK(t) - Sz(t) + 7, (23)

thus, by taking the long-time average, confirming that

C=35,+j. (24)
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® The Krylov subspace method is a powerful tool to understand the
dynamics in quantum systems.

® Krylov complexity safely detects and characterizes dynamical phase
transition in the LMG model.




® The Krylov subspace method is a powerful tool to understand the
dynamics in quantum systems.

® Krylov complexity safely detects and characterizes dynamical phase
transition in the LMG model.
Open questions
e What is the Krylov basis for hg > 0?

® How does C scales near the dynamical critical point? Is it like

jTCf ~ |h — hy|7? What is the value of ~?

Does C functions as an order parameter in other models?
® Deeper connections with ESQPT?
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